
Tensor Network for Supervised Learning at Finite Temperature

Haoxiang Lin1 , Shuqian Ye1 , Xi Zhu1∗

1Shenzhen Institute of Artificial Intelligence and Robotics for Society,
the Chinese University of Hong Kong, Shenzhen

{haoxianglin, shuqianye}@link.cuhk.edu.cn, zhuxi@cuhk.edu.cn

Abstract
The large variation of datasets is a huge barrier
for image classification tasks. In this paper, we
embraced this observation and introduce the fi-
nite temperature tensor network (FTTN), which im-
ports the thermal perturbation into the matrix prod-
uct states framework by placing all images in an
environment with constant temperature, in analog
to energy-based learning. Tensor network is cho-
sen since it is the best platform to introduce ther-
mal fluctuation. Different from traditional network
structure which directly takes the summation of in-
dividual losses as its loss function, FTTN regards it
as thermal average loss computed from the entan-
glement with the environment. The temperature-
like parameter can be automatically optimized,
which gives each database an individual tempera-
ture. FTTN obtains improvement in both test accu-
racy and convergence speed in several datasets. The
non-zero temperature automatically separates sim-
ilar features, avoiding the wrong classification in
previous architecture. The thermal fluctuation may
give a better improvement in other frameworks, and
we may also implement the temperature of database
to improve the training effect.

1 Introduction
Originated from quantum many-body physics and quan-
tum information sciences, tensor networks (TNs) states are
building blocks designed for the manipulation of very high-
dimensional data, representing the complex quantum states
[Kuhn and Richter, 2019]. Key information of the overall
wave function is encoded in individual block, and the in-
sights into the entire framework enable the powerful numer-
ical simulation approaches [Orús, 2019; Orús, 2014]. In the
2000s, TNs are applied in quantum information theory to ex-
plore many-body entanglement in the low-energy eigenstates,
like the ground state quantum spin chain in 1D [Fannes et
al., 1992], a lattice model on a thin 2D torus [Milsted et
al., 2019], and also excited states like exciton and bi-exciton
[Kuhn and Richter, 2019]. Anywhere there is a correlation,

∗Contact Author

there is also room to apply TNs’ ability of estimating many-
body entanglement.

Now, TNs are active in interdisciplinary areas besides
physics. In recent years, great progress has been made in
applying tensor networks to machine learning for both super-
vised and unsupervised tasks: the matrix product state (MPS)
can be used as classifier [Stoudenmire and Schwab, 2016],
the tree tensor network (TTN) is equivalent to a deep convo-
lutional arithmetic circuit (ConvAC) [Levine et al., 2017] ,
and both MPS and TNN can be designed as generative mod-
els [Han et al., 2018; Cheng et al., 2019]. Meanwhile, TN has
been investigated for other machine learning applications like
the compressing of neural network weight layers [Novikov
et al., 2015], the compressed sensing [Ran et al., 2019] and
data completion [Wang et al., 2016]. TN is proven to be one
of the most suitable platforms in connecting physics and ma-
chine learning, which is the reason why we choose TN as the
platform to insert thermal fluctuation.

One excellent optimization method for MPS classifier is
adapted from density matrix renormalization group (DMRG)
algorithm in physics. [Stoudenmire and Schwab, 2016] Be-
sides this DMRG-like optimization algorithm, automatic gra-
dient can also be implied to network training [Efthymiou et
al., 2019]. However, despite great achievements, they use a
tensor network structure corresponding to physical system at
high temperature, all states are calculated. If the variation
between graphs from the same label is small and that from
different labels is large, all features have large separation, so
the analysis of all states is proper and the noise does not mat-
ter a lot. However, when the variation between images from
the same label is relatively large and that from different labels
is narrowed, the inputs are becoming complex so that we need
to focus on the main feature. The proposed solution is thermal
fluctuation, which requires us to find the typical wave func-
tion at finite temperature. In physics, one useful approach is
the Minimally Entangled Typical Quantum States (METTS),
which ensemble the average of pure states to obtain an ex-
cellent approach. A finite-T DMRG algorithm is also pro-
vided to obtain the states at finite temperature [Stoudenmire
and White, 2010].

In this work, we combine the finite temperature systems
with tensor network, by introducing an extra temperature
layer. In Section 2, we construct the tensor network struc-
ture at finite temperature (FTTN), and its corresponding op-

timization algorithm is described in Section 3. Then we
give a physical interpretation in Section 4. To summarize
the result as depicted in Section 5, we find that, by intro-
ducing a temperature layer into the MPS, similar features
can be separated, giving improvement on the test accuracy
and convergence speed. For large variation dataset, Fashion-
MNIST [Xiao et al., 2017], the test accuracy is increased
from 87.73% to 88.72%, around one percentage increment.
Even for the small variation dataset, MNIST [LeCun et al.,
1998], the test accuracy is increased from 98.31% to 98.43%.
This method can gives rise to other machine learning frame-
works like graph neural network (GNN) and convolutional
neural network (CNN).

2 Tensor Network and Temperature Layer
In this section, we briefly introduce the relationship between
MPS for quantum physics calculation and MPS for machine
learning. Then we propose our temperature-endorsed tensor
network structure for machine learning. We will concretely
interpret our FTTN framework later in Section 4.

Figure 1: Images with same label from different datasets. a) images
with label “0” from MNIST dataset. b) images with label “ankle
boot” from fashion-MNIST dataset. It can be seen that the first three
images are very similar, but the latter three have large variation.

In this work, we focus on the image classifications task.
One dataset that traditional neural network structure performs
badly is the large variation dataset. As shown in Figure 1, the
first three images are adapted from MNIST with the same
label “0”. They share the same shape, a feature “circle” is
enough to describe it. The traditional networks give larger
than 97% [Stoudenmire and Schwab, 2016] without a com-
plex framework. However, when it comes to large variation
datasets like fashion-MNIST as shown in Figure 1b, state of
the art deep learning methods obtaining about 93% test ac-
curacy [Bhatnagar et al., 2017]. A huge difference exists be-
tween these images even though they come from the same
label “ankle boot”. It is hard to describe them simply us-
ing one feature. Compared with the first image, the second
one are shaper and the third image has an extra heel. Even
though human can notice these features, it is harder for net-
work structure to distinguish their similarity.

Though MPS is specialized in estimating one-dimensional
correlation, it can also be applied to higher-dimensional data

as well, where the two-dimension image is mapped into a
one-dimensional chain. The non-linear kernel learning re-
quires the manipulation of very large tensor, where the input
data X are mapped into a high dimension space by a feature
map Ψ before the final decision f(X) = W · Ψ(X). To
deal with the large tensors, the kernel trick is adapted, which
only requires working with scalar products of feature tensors
[Muller et al., 2001]. To apply TN to machine learning, a
feature map Ψ in the form of local map ψ multiplication

Ψ(X) = Ψ(S)(p) = ψ(S1)(p1)⊗ψ(S2)(p2)⊗· · ·⊗ψ(SN)(pN)
(1)

is adapted, where S = [S1, S2, ..., SN] is the pixel position
and p = [p1, p2, ..., pN] is its corresponding gray scale value
ranging from 0 for black to 1 for white, ⊗ is the Kronecker
product. One feature map used in [Stoudenmire and Schwab,
2016] is ψ(p) = [cos(πp/2) sin(πp/2)]T , mapping the
gray-scale value to a quantum spin. Another feature map is
ψ(x) = [1 − p p]T , which is used in [Efthymiou et al.,
2019]. Sometimes this column vector is written as |ψ〉 and
its conjugate transpose is written as 〈ψ|. But the selection of
feature map is not important. These local map ψ correspond
to individual blue circle with an edge as shown in Figure 2(a).
For a certain learning task and a specified feature map, a MPS
W (contracted sequence of low-order tensors A(S), the yellow
cubic shown in Figure 2b) can approximate weight tensor ,

W(S) =
∑

χ1,χ2,...,χN

A
(S1)
i1χ1

A
(S2)
i2χ1χ2

· · ·A(SN)
iNχN

(2)

the subscript of A(S) is its edges and the connecting edge be-
tween nearest tensors is the bond dimensions χ, one hyper-
parameter of the tensor network. Figure 2 indicates the struc-
ture. The lines represents tensor edges and the sharing edges
indicates summation. For example, the contraction of left-
most weight tensor A(S1)

i1χ1
and feature map tensor ψ(S1)(p1)

gives
∑
i1
A
(S1)
i1χ1

ψ(S1)(p1), a rank 2 tensor, also known as
matrix. The label index l is placed arbitrarily at one tensor
and this tensor is named as label tensor. If the weight matrix
and the feature map are connected, the entire tensor network
represents the final decision f(X) = W ·Ψ(X).

The MPS framework in Figure 2(b) is in analog to calculat-
ing the average of an observable when the feature map only
consists of real number. Originally in physics, the expecta-
tion of an observable is 〈ψ|H |ψ〉, where the Hamiltonian
H is a transpose conjugate matrix standing for the observ-
able, similar to the weight layer. Indices connected to the
wave functions 〈ψ| and |ψ〉 are generally the same, or some-
times conjugated. [Fannes et al., 1992; Klümper et al., 1993;
Orús, 2014]. As for the machine learning task, one of these
two indices is truncated as shown in Figure 2(b). This is
the same MPS structure as [Stoudenmire and Schwab, 2016;
Efthymiou et al., 2019], if we treat the observable H as a
modified weight tensor.

Inspired by the very successful Minimally Entangled Typ-
ical Quantum States (METTS) algorithm [Stoudenmire and
White, 2010], we propose an MPS framework at finite tem-
perature. First, we need to recover the original tensor network
structure with two input wave functions as shown in the left

Figure 2: a) The tensor network representation of weight tensor W
and feature map Ψ. Each pixel of an image is encoded in a rank-
1 tensor, also known as vector, corresponding to Equation 1. The
entire weight tensor W is approximated by contracted sequence of
low-order tensors A, corresponding to Equation 2. b) MPS for quan-
tum physics and machine learning. The left sub-figure stands for the
expected value of an observable, while the right sub-figure is the
tensor network architecture for machine learning.

sub-figure of Figure 2b. The diagonal element of A′:,ij,: is
set as the element of A:,ij , where i and j are the inter-layer
edges, this procedure adds an extra edge. Notice that now
the weight tensor A(s) has the rank of 4 except the boundary
tensor which has the rank of 3. Then the temperature layer T
is constructed by taking the exponential of recovered weight
tensors −βA′ where β is a temperature-like constant, which
is T = exp(−βA′). The upper and lower edges of the tem-
perature layer are connected to the input feature map and the
weight layer. This recovery step is necessary since in ma-
chine learning representation, the rank of weight matrix is 3
except the boundary tensor which has the rank of 2. If we
simply take exponential of these weight matrices, the num-
ber of edges is not enough to connect both the weight layer
and the feature map. From this step, the tensor network struc-
ture is formulated as shown in the left sub-figure of Figure 3.
Then we use the initial weight tensor to replace this modified
weight tensor to truncate the upper part of this framework,
providing a simplified version as shown in the right sub-figure
of Figure 3. Now, FTTN is constructed.

In this work, we are interested in classifying data with
given hidden labels. The contraction of the entire FTTN
framework gives a vector, whose largest element corresponds
to the output class.

3 Optimization Algorithm
In this section, we focus on the optimization algorithm of
FTTN. It is a slightly modified version based on gradient de-
scent.

As for the Bayesian neural network, there exists another
way to incorporate temperature effect. [Baldock and Marzari,
2019] This method defines the potential energy of the net-
work according to the calculated loss, and then the posterior
distribution is temperature-adjusted based on input batches
and the potential energy. However, in the FTTN, the potential
energy is based on the weight tensor A instead of the output

Figure 3: The evolution of our tensor network for supervised learn-
ing at finite temperature. The left sub-figure is the physical rep-
resentation of calculating observables with the endorsement of the
temperature layer. The middle sub-figure is the simplified version,
where we truncate one edge to reduce the number of tensors. The
right sub-figure contract the weight tensor with its corresponding
temperature tensor to obtain a simplified version, which is in analog
to the previous MPS framework.

from the entire network. Such a method can be useful, but in
this work, we use another algorithm. Here the loss function
is set as multi-class cross-entropy defined as:

Loss = −
∑

(xi,yi)

log
(

Softmax
(
f (yi)(xi)

))
The gradient of each individual tensor A(S) can be

computed through a “sweeping” optimization algorithm
[Stoudenmire and Schwab, 2016] or automatic gradients
which is built-in to TensorFlow [Roberts et al., 2019;
Efthymiou et al., 2019]. By adding the coefficient to the ob-
tained gradient, FTTN can be optimized easily without great
change. After revising the weight layer, the temperature layer
is simultaneously adjusted. Other optimization methods can
also be applied to FTTN as long as its gradient can be com-
puted and adjusted based on our proposed method.

Due to the endorsement of temperature layer, the back
propagation process is modified. The exact solution is com-
plex, and we propose an approximation. Notice that the tem-
perature layer (T) and the weight layer (W) are strongly re-
lated by the formula T = exp(−βW). We first contracted the
temperature layer with its corresponding weight layer. This
contraction produces a T-dependent weight layer Ô:

Ô = A · exp(−β · A) (3)

Therefore, in the back-propagation process, an coefficient C
need to be added:

C =
∂Ô

∂A
= (1− βA) · exp(−βA) (4)

Compared with the traditional back-propagation method for
TN, the DMRG-like optimization method, the adjustment is
the change of gradient. This is in analogue to modify the gra-
dient matrix by multiplying the coefficient cijk on each ele-
ment of the matrix. For the other built-in optimizer of Ten-
sorFlow, we can also directly change the gradient matrix to
optimize FTTN.

Even though the sweeping algorithms like the DMRG are
preferred in physical applications due to its fast convergence,

Figure 4: The three steps contraction order of FTTN. (a) Step 1,
contract temperature tensor with its corresponding weight tensor and
local feature map. This creates new effective tensors depicted as
green squares. (b) Step 2, contract the generated tensors in pairs.
This step is conducted independently for each pair of them in paral-
lel. (c) Step 3, repeat step 2 until the tensor chain is fully contracted.

the simplicity of gradient-based optimization are more attrac-
tive to machine learning applications, which is the method we
implied. In this FTTN framework, after calculating the gradi-
ent matrix, we calculate the coefficient matrix based on equa-
tion 4. Then the coefficient matrix is used to adjust the gra-
dient. The temperature layer is adjusted based on the weight
layer.

The contraction order matters the computation complex-
ity. The DMRG-like order gives the total time complexity
of order O(NLd2χ2)[Stoudenmire and Schwab, 2016], but
it can not be forwarded to parallelized computation. Here
we use a parallelized contraction order. The first step con-
tracts the temperature layer with its corresponding weight
layers and the feature map. This step gives a tensor chain.
In the second step, we contract the nearest tensors in pair,
then this step is repeated until the tensor chain is fully con-
tracted. The total time complexity of this contraction is
O(Nd2χ2 + χ3log(N)). Even though the total cost is near
the same as the previous one, this contraction order has the
advantage that each step is parallelized as matrix multiplica-
tion without requiring the calculating result from the neigh-
boring calculation. We noticed that the parallelized computa-
tion gives great enhancement on calculation speed.

4 Physical Interpretation
In this section, we will briefly investigate the MPS framework
and the effect of the endorsed temperature layer. This layer
gives a thermal perturbation to the feature map, flatten the
noise. The dataset with large variation contains large noise,
and the endorsement of the temperature layer flatten the noise
to obtain a better performance.

To summarize our tensor network framework, we embed
data into space in the form of tensor, then the inner product
between data and weight gives the final prediction. It should
be noticed that the MPS tensor A can be interpreted as an-

other vector in the tensor space, intuitively, a combination of
all images in a given class. Ideally, for a specific class, an
image not belonging to this class should be orthogonal to the
MPS tensor, while an image belonging to this class has a large
overlap with the MPS tensor. In physics, this is in analog to
calculate the probability for any outcome of well-defined ob-
servables, which is calculated through the density matrix ρ.
One may define the loss function as potential energy, and now
the optimization is in analog to obtain the ground states. Dif-
ferent from traditional network structure which directly takes
the summation of individual losses as its loss function, the
input feature goes through a temperature layer to be entan-
gled with environment, in the other words, FTTN regards the
loss as thermal average loss computed from the entanglement
with the environment.

The insertion of the temperature layer is inspired by the
METTS algorithm in physics applications [White, 2009].
The fundamental proposition of statistical mechanics indi-
cates that the density matrix of a system at inverse temper-
ature β with Hamiltonian H is ρ = exp(−βH). One can
regard this formula as arising from the quantum mechanical
entanglement with a heat bath which produces mixed states.
In other words, FTTN regards it as thermal average loss com-
puted from the entanglement with the environment instead of
the direct summation. As for this classification task, the MPS
tensor can be treated as the heat bath with a certain Fermi en-
ergy, and the individual local feature map entangled with the
MPS tensor to produce mixed states. We idealized the statisti-
cal mechanism, the physical system has a specific history and
environment. We equilibrate the system with weak coupling
to a heat bath (MPS tensor), then moving coupling between
the heat bath and the system.

Here a typical set of states {|ψ(i)〉}with probabilities P (i)
need to be chosen, it satisfies the fundamental proposition:∑

i

P (i) |ψ(i)〉 〈ψ(i)| = exp(−βH) (5)

From this equation, the expectation value of any Her-
mitian operator H can be determined from average of
〈ψ(i)|H |ψ(i)〉, where each |ψ(i)〉 is chosen randomly ac-
cording to P (i). Let |i〉 to be a complete orthonormal basis,
then one specific states satisfies Equation 5 can be:

|ψ(i)〉 = P (i)−1/2 exp(−βH/2) |i〉
P (i) = 〈i| exp(−βH) |i〉 = trace(ρ |i〉 〈i|)

(6)

Notice these results do not require the states {|i〉} to be the
orthonormal basis. From the physical aspect, the final re-
sult should be divided by a partition function Z = Tr(ρ) =∑
i P (i), but here it is omitted since the final result is deter-

mined by the largest one.
The insertion of our proposed temperature layer is in ana-

log to this METTS algorithm. The contraction of the temper-
ature layer and the feature map gives a thermal perturbation
to inputs. Here we give an intuitive explaination, if a picture
contains a perfectly straight line, both humans and computers
can easily distinguish it. However, if the line is slightly bent,
humans can still treat it as a straight line. But for computers,
by accurate calculation, the line is treated as a curve rather

than a line. For thermal fluctuation, the bent line is treated
as the superposition state of line and curve, which makes the
network structure treat it as line by ignoring the small pertur-
bation. In other words, the temperature-like parameter β is
an analog to a threshold. If the difference between input and
feature is smaller than the threshold, they are treated as the
same; however, for input and features with difference larger
than the threshold, they are separated.

Mathematically, for a small β → 0, this temperature layer
approaches the identity matrix, corresponding to the MPS
machine learning structure without the temperature layer.
However, for a large β, due to the exponential decay, the vari-
ation between features is exponentially flattened, resulting in
an entirely black image. A proper β emphasizes the main fea-
ture and by choosing a proper temperature, the image contrast
is adjusted to produce easy-to-train images.

5 Experiment
In this section, we implement FTTN using TensorNetwork
[Roberts et al., 2019] with TensorFlow [Abadi et al., 2016]
backend. Here we focus on the result on Fashion-MNIST due
to its large variance, while FTTN also demonstrates improve-
ment on other small-variance datasets like MNIST.

For TN without thermal fluctuation, it is observed that
training with automatic gradients is nearly independent of
the used bond dimension [Efthymiou et al., 2019], while the
prior bond dimension matters when using the DMRG-like
sweeping algorithm [Stoudenmire and Schwab, 2016]. One
possible reason is that the latter one changes the bond di-
mension during the optimization process, while the previous
one does not. Therefore, we adapt the automatic gradient
descent method rather than the DMRG-like sweeping algo-
rithm, since we want to focus on the temperature-like param-
eter β instead of other parameters like bond dimension.

We train on the total fashion-MNIST training set consist-
ing of 60,000 images of size 28 × 28. The test accuracy is
calculated on the whole test dataset consisting of 10,000 im-
ages. To illustrate the effect of the temperature layer, we use
the same setup as [Efthymiou et al., 2019], where the typical
setting that performs well is to use Adam optimizer [Kingma
and Ba, 2014] with a learning rate of 10−4 and the batch
size of 50. We adapt the multi-class cross-entropy as loss
function, which is defined in Equation 3. The feature map is
ψ(x) = [1−p p]T . We also evaluate our method to MNIST
dataset, which has relatively small variation.

Ideally, the performance of FTTN achieves best when the
given temperature is the same as that of the dataset. Here
we adopt a simulated annealing algorithm to do the automat-
ically optimization since they share a similar physical pro-
cess. FTTN is given a randomly selected temperature. Then
for each step, the parameter β close to the current one is se-
lected and its corresponding accuracy is measured, then this
algorithm decides whether move to it or not depending on the
temperature and the fact whether the new solution is better
or worse than the previous one. The optimization process of
this temperature-like parameter β is shown in Figure 5. It
can be seen that the temperature-like hyper-parameter β con-
verges to 0.4 for fashion-MNIST, independent of the bond di-

Figure 5: The optimization process of the temperature-like param-
eter β.

mension. Such parameter might be the intrinsic property of a
dataset, and obtaining such property can be useful in training
machine-learning-base tensor network frameworks.

Experiments observe that FTTN has following advantages:
Test Accuracy As shown in Figure 6, we analyze the effect
of thermal perturbation with different bond dimensions χ as
shown in Figure 6. Without thermal perturbation, the test ac-
curacy increase with bond dimension χ at first, but it goes
through a decrease after a critical number. The introduced
thermal perturbation does not change this tendency, but it
can result in an overall improvement in test accuracy. Sim-
ilar to what observed without thermal fluctuation, FTTN has
tiny dependence on the bond dimension. We have seen that
the thermal perturbation gives rise to the training accuracy
and the convergence speed. The endorsement of the temper-
ature layer gives an accuracy rising from 87.73% to 88.72%,
a one percentage increment for the database Fashion-MNIST.
This means FTTN is suitable for this database since it has
a large variation. However, even for the small variation
database MNIST, FTTN also gives an accuracy increment
from 98.31% to 98.43%.

Figure 6: The χ dependent bond accuracy.Orange and blue lines
correspond to the testing accuracy for Fashion-MNIST using tensor
network with/without thermal perturbation respectively. Here the
model of Figure 2a refer to the case without thermal perturbation.

Speed of Convergence We observed that the temperature
layer can improve the speed of convergence. The speed
of convergence is significantly improved in the first several
epochs as shown in Figure 7. Here the bond dimension χ is
set as 12. We can see that the proper β gives a larger than
2% increment on the testing accuracy during the first several
epoches. From our experiment, even though the improvement
will decreases with increasing epoches, the improvement still
possesses a considerable quantity.

Figure 7: The first 3-18 epoch of FTTN with different β. Here we
use χ = 12 as an example, while similar situation happens for other
χ value. The solid and dashed line represent the accuracy for test
and training set respectively.

The thermal perturbation effect is illustrated in Figure 8.
The photo shown in Figure 8 is inaccurately classified as
“coat” without perturbation, while the thermal fluctuation
gives it a correct label “dress”. We tried the traditional CNN
structure using two convolutional layers and two pooling lay-
ers [Xiao et al., 2017], despite its higher accuracy, this image
can not be accurately classified. One of the differences is that
the middle section is separated for “coat” while for “dress”,
the entire middle part is treated as a whole. Initially at β = 0,
the feature of dress and coat degenerated since they share sim-
ilar features, here a line in the middle is added to emphasize
their differences. However, these two features are separated
with the increasing β value, which is the effect of the tem-
perature layer. A proper β gives enough separation to similar
features.

6 Conclusions
In this work, we introduce a thermal perturbation into the
tensor network structure by insertion of a temperature layer
and then we analyze the effect of this thermal perturbation.
The constructed structure is in analogue to that from METTS
algorithm [Stoudenmire and White, 2010]. Such modifica-
tion leads to around one percentage increment of accuracy in
Fashion-MNIST dataset. Meanwhile, the convergence speed
is accelerated, which is significant in the first several epoches.
We hope that this technique we proposed here will be taken
up by the wider machine learning community.

Figure 8: The schematic diagram of the thermal fluctuation effect.
The left figure is adapt from fashion-MNIST, while the right one is
this image with thermal fluctuation. The perturbation separates sim-
ilar features of “coat” and “dress” to make a correct classification.

While using an one-dimension MPS ansatz for the classifi-
cation works well even for two-dimensional data as shown in
this work, there still exist some other feasible tensor network
structures, like projected entangled pair states (PEPS) [Ver-
straete and Cirac, 2004], multiscale entanglement renormal-
ization ansatz (MERA) [Vidal, 2007], comb tensor networks
[Chepiga and White, 2019]. Our method of introducing ther-
mal fluctuation may also be applied to these frameworks and
gives an enhancement. There is also much room to improve
the temperature-endorsed optimization algorithm by incorpo-
rating with other frameworks like convolutional neural net-
work and graph neural network. Besides the thermal fluc-
tuation, symmetry is excellent in improving tensor network
[Vanhecke et al., 2019]. The recurrent neural network has
been proven as an analogy to wave physics [Hughes et al.,
2019], and we believe the physics-endorsed frameworks will
greatly contribute to the machine learning community.

References
[Abadi et al., 2016] Martı́n Abadi, Paul Barham, Jianmin

Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. Tensorflow: A system for large-scale machine learn-
ing. In 12th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 16), pages 265–283,
2016.

[Baldock and Marzari, 2019] Robert J. N. Baldock and
Nicola Marzari. Bayesian neural networks at finite tem-
perature, 2019.

[Bhatnagar et al., 2017] Shobhit Bhatnagar, Deepanway
Ghosal, and Maheshkumar H Kolekar. Classification
of fashion article images using convolutional neural
networks. In 2017 Fourth International Conference on
Image Information Processing (ICIIP), pages 1–6. IEEE,
2017.

[Cheng et al., 2019] Song Cheng, Lei Wang, Tao Xiang, and
Pan Zhang. Tree tensor networks for generative modeling.
Physical Review B, 99(15):155131, 2019.

[Chepiga and White, 2019] Natalia Chepiga and Steven R
White. Comb tensor networks. Physical Review B,
99(23):235426, 2019.

[Efthymiou et al., 2019] Stavros Efthymiou, Jack Hidary,
and Stefan Leichenauer. Tensornetwork for machine learn-
ing. arXiv preprint arXiv:1906.06329, 2019.

[Fannes et al., 1992] Mark Fannes, Bruno Nachtergaele, and
Reinhard F Werner. Finitely correlated states on quantum
spin chains. Communications in mathematical physics,
144(3):443–490, 1992.

[Han et al., 2018] Zhao-Yu Han, Jun Wang, Heng Fan, Lei
Wang, and Pan Zhang. Unsupervised generative mod-
eling using matrix product states. Physical Review X,
8(3):031012, 2018.

[Hughes et al., 2019] Tyler W Hughes, Ian AD Williamson,
Momchil Minkov, and Shanhui Fan. Wave physics
as an analog recurrent neural network. arXiv preprint
arXiv:1904.12831, 2019.

[Kingma and Ba, 2014] Diederik P. Kingma and Jimmy Ba.
Adam: A method for stochastic optimization, 2014.

[Klümper et al., 1993] A Klümper, A Schadschneider, and
J Zittartz. Matrix product ground states for one-
dimensional spin-1 quantum antiferromagnets. EPL (Eu-
rophysics Letters), 24(4):293, 1993.

[Kuhn and Richter, 2019] Sandra C Kuhn and Marten
Richter. Combined tensor network/cluster expansion
method using logic gates: Illustrated for (bi) excitons by
a single-layer mos 2 model system. Physical Review B,
99(24):241301, 2019.

[LeCun et al., 1998] Yann LeCun, Léon Bottou, Yoshua
Bengio, and Patrick Haffner. Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[Levine et al., 2017] Yoav Levine, David Yakira, Nadav Co-
hen, and Amnon Shashua. Deep learning and quantum en-
tanglement: Fundamental connections with implications
to network design. arXiv preprint arXiv:1704.01552,
2017.

[Milsted et al., 2019] Ashley Milsted, Martin Ganahl, Stefan
Leichenauer, Jack Hidary, and Guifre Vidal. Tensornet-
work on tensorflow: A spin chain application using tree
tensor networks. arXiv preprint arXiv:1905.01331, 2019.

[Muller et al., 2001] K-R Muller, Sebastian Mika, Gunnar
Ratsch, Koji Tsuda, and Bernhard Scholkopf. An intro-
duction to kernel-based learning algorithms. IEEE trans-
actions on neural networks, 12(2):181–201, 2001.

[Novikov et al., 2015] Alexander Novikov, Dmitrii
Podoprikhin, Anton Osokin, and Dmitry P Vetrov.
Tensorizing neural networks. In Advances in neural
information processing systems, pages 442–450, 2015.

[Orús, 2014] Román Orús. A practical introduction to tensor
networks: Matrix product states and projected entangled
pair states. Annals of Physics, 349:117–158, 2014.

[Orús, 2019] Román Orús. Tensor networks for complex
quantum systems. Nature Reviews Physics, 1(9):538–550,
2019.

[Ran et al., 2019] Shi-Ju Ran, Zheng-Zhi Sun, Shao-Ming
Fei, Gang Su, and Maciej Lewenstein. Quantum com-
pressed sensing with unsupervised tensor-network ma-
chine learning, 2019.

[Roberts et al., 2019] Chase Roberts, Ashley Milsted, Mar-
tin Ganahl, Adam Zalcman, Bruce Fontaine, Yijian Zou,
Jack Hidary, Guifre Vidal, and Stefan Leichenauer. Ten-
sornetwork: A library for physics and machine learning.
arXiv preprint arXiv:1905.01330, 2019.

[Stoudenmire and Schwab, 2016] Edwin Stoudenmire and
David J Schwab. Supervised learning with tensor net-
works. In Advances in Neural Information Processing Sys-
tems, pages 4799–4807, 2016.

[Stoudenmire and White, 2010] EM Stoudenmire and
Steven R White. Minimally entangled typical thermal
state algorithms. New Journal of Physics, 12(5):055026,
2010.

[Vanhecke et al., 2019] Bram Vanhecke, Laurens Vander-
straeten, and Frank Verstraete. Symmetric cluster expan-
sions with tensor networks, 2019.

[Verstraete and Cirac, 2004] Frank Verstraete and J Ignacio
Cirac. Renormalization algorithms for quantum-many
body systems in two and higher dimensions. arXiv
preprint cond-mat/0407066, 2004.

[Vidal, 2007] Guifre Vidal. Entanglement renormalization.
Physical review letters, 99(22):220405, 2007.

[Wang et al., 2016] Wenqi Wang, Vaneet Aggarwal, and
Shuchin Aeron. Tensor completion by alternating mini-
mization under the tensor train (tt) model, 2016.

[White, 2009] Steven R White. Minimally entangled typi-
cal quantum states at finite temperature. Physical review
letters, 102(19):190601, 2009.

[Xiao et al., 2017] Han Xiao, Kashif Rasul, and Roland
Vollgraf. Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms, 2017.

	Introduction
	Tensor Network and Temperature Layer
	Optimization Algorithm
	Physical Interpretation
	Experiment
	Conclusions

